
“That lunch wasn’t free after all” —Making Life Easier

That lunch wasn’t free after all
Ronald Landheer-Cieslak1*

*For correspondence:
rlc@vlinder.ca (Vlinder Software) 1Vlinder Software— Founding Analyst

Abstract The Spectre and Meltdown bugs have shown that the free lunch of ever-increasing
software performance thanks to ever-increasing hardware performance was indeed over a decade

ago. We should therefore stop attempting to exploit instruction-level parallelism with ever more

complex caches and ever more complex pipelines and branch predictors, and start exploiting the

inherent parallelism of hardware. In order to do that, we need to change the way we think about

software from our current imperative way of thinking to a more declarative way of thinking. At the

same time, we need to change the way our computers think about software to allow them to

exploit this more declarative style to use their inherent parallelism and free up die space currently

used for caches and ILP.

Introduction
In Sutter (2005), Herb Sutter proclaimed that “the free lunch is over”: processors would stop getting
faster and faster on a single core and programmers would have to learn new constructs to exploit

the parallelism that comes with having multiple cores in a single CPU. Computers would still become

faster, but mostly because “chip designers are under so much pressure to deliver ever-faster CPUs

that they’ll risk changing the meaning of your program, and possibly break it, in order to make it

run faster”.

Lipp et al. (2018) and Kocher et al. (2019) showed this to be clairvoyant: optimizations imple-
mented in CPUs were visible to user-space code and could be exploited, causing security issues in

various applications. Chisnall (2018) argues that this is, at least in part, caused by “the quest for
high ILP” (instruction-level parallelism), which has added significant complexity to processor design

and is (he argues) largely an effort to turn modern CPUs into effective PDP-11 emulators1.

Mitigating the Meltdown and Spectre bugs incurs a significant performance hit in all applications,

regardless of which language they were written and and regardless of whether the software exploits

the CPU’s multiple cores using explicit parallelism or concurrency. This effectively rolls back a large

part of the advances in processor speed since Sutter’s article was published, effectively making us

pay, collectively, for the last decade’s free lunch. We now have to determine how we’re going to pay

for dinner, and what that dinner should look (and taste) like.

Why we should change the way we think about software
Outside of the realm of scientific computing, we tend to think of software and software design

in fairly linear terms, as instructions being executed in a particular order to perform a particular

task. Imperative paradigms— procedural, object-oriented— work this way and allow functions,

procedures and methods to exhibit side-effects: they assume that any line of code can change the

state of any variable anywhere in the program, provided they have some way to access (reference)

that variable. This way of thinking is inhibiting: it makes it more difficult to parallelize processes

1This also concurs with Sutter’s contention, as cited in the previous paragraph: “chip designers are under so much pressure

to deliver ever-faster CPUs that they’ll risk changing the meaning of your program and possibly break it in order to make it run

faster”. The problem, of course, is thay they not only broke it, but they introduced security issues that software cannot easily

work around.

1 of 5

rlc@vlinder.ca


“That lunch wasn’t free after all” —Making Life Easier

because parallel processes, in this way of thinking, tend to mutate shared data. This leads to using

synchronization mechanisms such as mutexes which, in turn, leads to problems such as deadlocks.

“Alternative” ways of thinking about software have traditionally tended towards event-driven

designs, in which still-explicit threading mechanisms communicate with each other through events

(ranging from single-bit signals to structured messages). Such events can be sent using simple

functions like the Windows API’s SetEvent function, in the case of a single-bit signal, or can be sent
through message queues, sockets, and the like in the case of structured messages. These designs

have become ubiquitous in both application-level software and in operating systems, but when

implemented using imperative approaches/languages, still assume universal read/write access

to shared resources — which means access to those resources still has to be synchronized. In

software, this means locks; in hardware, this means complex hardware to ensure cache coherency

etc., as pointed out by Chisnall (2018).
With declarative, functional languages such as Erlang and Haskell, the developer’s “mental

model” of the software they’re writing is radically different than it is for any software written in an

imperative language. This mental model is important because it guides the way we reason about

the software, and thus tends to determine where the bugs are. The differences are both important

for the way the code is translated and executed by the implementation (compiler suite, CPU), and

for the human mind reasoning about that code and that execution. Further, and importantly, they

affect the way things can be parallelized by the implementation.

Because pure functional languages do not allow for side-effects for functions, code written in

these languages does not assume universal read/write access to all memory, but can only access the

resources passed to them as parameters. That means three things: firstly, functional, declarative

code can sometimes be implicitly parallelized, as shown by Barwell (2018) in his PhD thesis:

Automatic approaches to parallelization seek to simplify parallelization for the program-

mer by removing the programmer from the equation. (. . . )

This does not mean, however, that which parallelization is trivial:

Despite being generally desirable, automatic approaches to parallelisation are limited

in a number of ways. (. . . ) Moreover, extending these analyses can be difficult; any

program transformations must be correct for all cases, for example. (. . . ) [L]imitations

[to current approaches] can reduce the amount of parallelism that can be introduced

to a program, and so potentially reduce any performance gains that can be achieved.

(Barwell, 2018)

Barwell goes on to introduce two novel pattern discovery mechanisms for automatic parallelization,

both of which are very promising, but both of which require a declarative approach to programming.

Secondly, as explained by Chisnall (2018), hardware designed for declarative, functional lan-
guages that do not assume universal read/write access to a flat memory can, in theory, be simplified

w.r.t. current hardware that is designed to run software written in imperative languages.

Finally, it has long been argued that a more declarative style with stricter checks by the compiler

leads to fewer run-time bugs and, thus, to greater productivity on the part of the developers.

With this in mind, one might point out that it is also possible to use such a declarative style in

an otherwise-imperative multi-paradigm language such as C++, which has built-in support for a

functional style of programming and the community around which has, over the last decade or so,

embraced a more functional style.

Addressing the pitfalls of instruction-level parallelism
As pointed out by Chisnall (2018) and made evident by the Meltdown (Lipp et al., 2018) and Spectre
(Kocher et al., 2019) bugs, chip manufacturers and designers have tended, over the last decade
or so, to increase instruction-level parallelism in order to increase the performance of their CPUs.

2 of 5



“That lunch wasn’t free after all” —Making Life Easier

They would not have done this if such parallelism was not an important part of improving that

performance, but the Meltdown and Spectre bugs also show that this is far from trivial to implement.

Branch prediction and predictive execution are only necessary because the CPU would otherwise

“waste cycles” loading values from, and storing values to, memory. This is also why caches, which are

orders of magnitude faster than main memory, but still slower than CPU registers, exist. Keeping

those caches coherent is also very complex, as shown by the large number of patents that exist in

this domain2.

However, hardware is inherently parallel: a CPU with more cores but less optimizations for

linear, “access to everything for everyone” execution would under-perform on today’s software,

but would perform much better than current CPUs with software written for those CPUs. We can

see this directly when we look at software uses that the GPU not for graphics processing, but for

other domain-specific applications in which massively parallel calculations are performed without

requiring side-effects. The same is true for applications that use FPGAs or dedicated hardware for

optimization. Whenever this is done, however, the developer needs to provide the data for the

computation to be performed and let that computation take place in parallel— which requires

another change in the way we think about software.

Explicit mechanisms for this type of thinking about software have emerged, over the last decade

or so, in multi-paradigm languages such as C++, as well as in imperative high-level languages such as

C# and Java: it has become more-or-less common practice to explicitly make certain computations

and certain tasks parallel to the “main” program using “futures” and “promises” together with either

explicit threads or thread pools. In C++, they have been part of the standard since C++11. These

explicit approaches, like the side-effects found in imperative programs, are inhibiting: they force the

developer to actively think about the parts of their program that can be parallelized, and to “make it

so”.

The cost of converging towards the computer
The advent and success of modeling techniques and UML, since the late 1990s, has shown that

humans tend to reason well in terms of abstraction: the body of anecdotal evidence to this effect is

practically infinite and the consensus among software engineering practitioners and researchers

is practically complete. Some questions remain on what, exactly, the impact of modeling and

abstraction is on software quality and maintenance cost and some studies3 on these questions

exist. None of these studies show any hint of a doubt, however, that modeling helps in reasoning

about the modeled software.

While it is clear that humans think well visually and at a certain level of abstraction, it is also

clear that computers do not: humans tend to get “bogged down” in details while computers excel

at exactly the most detailed level. In the vast majority of cases, the human could care less about

what the value of any given bit may be, while the computer cares for nothing else. The question

then becomes how the two can efficiently and effectively come together: as we have collectively

gotten better at working with computers and telling them what to do, and as computers have

collectively gotten better at doing what we tell them to, we have tended, over the last few decades,

to change our way of thinking about what we want computers to do to put that thinking in terms

that a computer can better understand, at the cost of our own understanding and our own ability

to effectively and efficiently reason about the instructions we give to a computer4. At the same

2A quick search on Google Patents showed several dozens of patents on this area filed and granted over the last few years,

indicating significant effort being expended in innovation in this field.

3For example, in an effort to quantify the impact of modeling and to create a modeling tool to aid in certain tasks, Ohmann
et al. (2016) showed that with adequate tools, developed for this purpose, students were both quicker and better at under-
standing and debugging tasks; Eloranta et al. (2015) showed that formal UML works better than informal “free-form” drawings;
and Amrit and Tax (2014) examined different aspects of UML modeling to determine what makes an UML model more or less
understandable.

4To put it differently: software engineers tend to spend disproportionate amounts of time on the tiniest of details, making

sure the computer does exactly what is intended, and losing sight of the “big picture”.

3 of 5

https://patents.google.com


“That lunch wasn’t free after all” —Making Life Easier

time, the computer hides what it actually does and pretends to be a PDP-11 (as pointed out by
Chisnall (2018)) at the cost of its own efficiency. These two trends are converging, and have perhaps
already converged, to the point where both humans are least efficient, spending too much time

and effort on details, and computers are also least efficient, pretending to implement an obsolete

architecture based on a popular, but obsolete, abstract machine. The question of efficiently and

effectively “coming together” is whether we can take our own strengths, working at an abstract level

without having to worry about side-effects (which we’re not good at) and allowing us to visualise

our logic (which helps us to reason about it), and combine those strengths with the strengths of a

computer, working at the minutest of detailed levels with many parallel processes; and how far

from that goal we have strayed in the last few decades.

Changing the way computers think about software
In 1989, Philip Koopman wrote a book called Stack computers: the new wave (Koopman, 1989) in
which he argued for a computer based on a multi-stack zero-operand machine (ML0)5. In this book,

which presents a taxonomy of stack machines, a number of stack machine implementations and

their relative benefits and drawbacks, and a general description of stack machines, he argues that

stack computers can be fast while also taking less space on the die than RISC or CISC computers do,

and being simpler to implement.

That stack machines with an instruction set based on the Forth language are relatively straight-

forward to implement is doubtlessly true6, but it is also clear that stack machines have not had the

commercial success that RISC and CISC-based architectures have. One of the reasons for this is the

level of investment that already exists in RISC and CISC architectures: the largest three PC processor

manufacturers, Intel, AMD and VIA, are heavily invested in CISC architectures based on x86. ARMH

and manufacturers of ARM-architecture-based CPUs are heavily invested in RISC architectures. The

two “camps” oppose each other, leaving very little space in the minds of investors and technologists

for other types of architectures. Forth-based and WISC architectures are therefore not represented

in the collective psyche of the group of people that have the money and/or the know-how.

The economic tide that has carried the RISC and CISC-based architectures does not negate,

however, that these architectures continue to become more and more complex in order to execute

software that makes certain assumptions about the machine and its memory model, and continue

doing so at faster rates. Simpler machines that do not cater to those assumptions— that memory is

a flat space that is universally accessible, that software is not written to be parallelized and therefore

needs to be augmented using instruction-level parallelism, etc. — will continue to have an uphill

battle, even if their advantages are becoming more and more obvious: a simple architecture with a

small silicon footprint onto which a high-level functional, declarative language can be mapped as an

assembly language into which other languages (such as Haskell) can be translated allows scalability

through parallelization that cannot be matched with PDP-11 emulators. Changing the way the

computer “thinks” about software and the assumptions it makes, by design, about the assumptions

we make can help push software design towards a model, discussed above, that makes it easier to

reason about software, while also making it more efficient to run such software.

Conclusion
The requisite technologies already exist, and have existed (in relative obscurity) for decades. The

necessary programming models also already exist and are becoming more popular with veteran

programmers and language developers. Side-effects are more and more universally seen as “evil”

5M for multiple stacks, L for large stacks, 0 for a zero-operand instruction set— in this case based on the Forth programming
language.

6In order to test this hypothesis, I sketched out an implementation of such a stack machine including an ALU, the stack, a

instruction interpreter/control component and the general architecture for the internal bus (to access memory, I/Os and the

like) in VHDL. While I stopped short of implementing a complete multi-core processor, I went far enough in the proof-of-concept

implementation to show that such a processor was certainly feasible and relatively straightforward to design.

4 of 5



“That lunch wasn’t free after all” —Making Life Easier

— and rightly so. This is, therefore, the price of dinner: we should change the way we think

about software, change the way the computer thinks about software, make the two converge on a

more declarative, functional paradigm that is easier to reason about for us humans and easier to

parallelize for computers, and start exploiting the inherent parallelism of hardware. These changes,

which will necessarily be costly at first, will change the flavor of programming but may also open

the door to massively parallel processing in our pockets— just like the technological revolution of

the last few decades has put the Internet in our pockets.

References
Amrit, C. and Tax, N. (2014). Towards understanding the understandability of uml models. pages 49–54.

Barwell, A. D. (2018). Pattern discovery for parallelism in functional languages. PhD thesis, University of St Andrews.
Chisnall, D. (2018). C is not a low-level language. Queue, 16(2):10.
Eloranta, V.-P., Isohanni, E., Lahtinen, S., and Sievi-Korte, O. (2015). To uml or not to uml?: Empirical study on the

approachability of software architecture diagrams. pages 101–105.

Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,

Schwarz, M., and Yarom, Y. (2019). Spectre attacks: Exploiting speculative execution.

Koopman, P. (1989). Stack computers: the new wave.
Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin, D.,

Yarom, Y., and Hamburg, M. (2018). Meltdown: Reading kernel memory from user space.

Ohmann, T., Stanley, R., Beschastnikh, I., and Brun, Y. (2016). Visually reasoning about system and resource

behavior. pages 601–604.

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s journal,
30(3):202–210.

5 of 5


	Introduction
	Why we should change the way we think about software
	Addressing the pitfalls of instruction-level parallelism
	The cost of converging towards the computer
	Changing the way computers think about software
	Conclusion

